ON THE INFORMATION AVAILABLE TO PLAYERS IN A DIFFERENTIAL GAME

PMM Vol. 36. N85, 1972, pp. 917-924
P. B. GUSIATNIKOV
(Moscow)
(Received May 3, 1971)

We consider three possible statements of the problem of termination of a differential game from a given point. We derive sufficient conditions for the completion of a linear differential game under a significant discrimination of the pursuer.

1. Let the motion of a vector z in an n-dimensional Euclidean space R be described by the vector differential equation

$$
\begin{equation*}
d z / d t=f(z, u, v) \tag{1}
\end{equation*}
$$

where $u \in P$ and $v \in Q$ are control parameters varying on sets P and Q which are compact in R. Regarding the right-hand side of Eq. (1) we assume that:
a) $f(z, u, v)$ is continuous in $(z, u, v) \in R \times P \times Q$;
b) the inequality

$$
\left|f\left(z_{1}, u, v\right)-f\left(z_{2}, u, v\right)\right| \therefore k\left|z_{1}-z_{2}\right|
$$

where k is a constant depending only on C, is fulfilled for any $u \in P, v \in Q$ and for

$$
z_{1}, z_{2} \in R,\left|z_{1}\right| \leqslant C,\left|z_{2}\right|-C ;
$$

c) there exists a constant B such that

$$
|z \cdot f(z, u, v)| \because B \quad\left(1+|z|^{2}\right)
$$

holds for all $z \in R, u \in P, v \in Q$;
d) the set $f(z, P, v)$ is convex for any $z \in R, v \in Q$. Furthermore, let a certain closed set M be specified in R. We say that the data listed above describe a differential game (1).

The measurable vector-valued functions $u^{*}=\{u(t), t \geqslant u\}, v^{*}=\left\{v(t), t \geqslant v_{1}\right.$, satisfying the inclusions $u(t) \in P, v(t) \fallingdotseq Q$ for each t, are called the controls of the players U and V, respectively. The goal of the player U is to drive the point z onto set M, while player V seeks to prevent this. The game is completed when the vector 2 first hits onto M. We remark that when conditions (a) - (d) are fulfilled, for any $z_{0} \in R(0 \leqslant \tau \leqslant T)$ and for any pair of controls u^{*}, v^{*} defined on [τ, T], there exists, and is unique [1], a solution $z(t)(\tau \leqslant t \leqslant T)$ of $E q_{0}(1)$ with the initial condition $z(0)=z_{0}$ (i, e. a vector-valued function $z(t)$, absolutely continuous on $[\tau, T]$, satisfying Eq. (1) almost everywhere). The function $z(t)$ is called the motion and is denoted $z(t)=z\left(t ; \tau, z_{0}, u^{*}, l^{*}, T\right)$. For fixed τ, T, v^{*} the set of motions is compact [2,3]: if $z_{i} \rightarrow z_{n}$ as $i \rightarrow \infty$, then from any sequence of motions $z_{i}(t)=z\left(t ; \tau, z_{i}, u_{i}{ }^{*}, v^{*}, T\right)$ we can select a subsequence $z_{n_{i}}(l)$ converging, uniformly on $[\tau, T]$ to some motion $=\left(l ; T, z_{i}, U r^{*}, l^{*}, T\right)$. Uniform convergence on $[\tau, T]$ will be denoted by the symbol

We say that game (1) can be completed from a point z_{0} in time, $t\left(z_{0}\right)$ if (whatever be the control v^{*} of player V^{\prime}) the player U can so construct his own control u^{*} that
the point $z(t)=z\left(t ; 0, z_{0}, u^{*}, v^{*}, t\right)$ hits onto the set M no later than in a time $t\left(z_{0}\right)$. As regards the information available to player U we assume here that each instant t he knows $z(t)$ and
(I) the ε-sprout of the control of player V, i.e. $v(s), t \leq s=\varepsilon$;
(II) $v(s), s \leqslant t$;
(III) he is forced to give his ε-sprout $u(s)(t \leqslant s \leqslant t+\varepsilon)$, after which player V chooses the control $v(t)$.
In this paper we prove that statements (I) and (II) of the problem of terminating game (1) from a given point z_{0} are, in a specific sense, equivalent. For this purpose we introduce an operator F_{ε} (an analog of the operator T_{ε} in [4]) and to the differential game (1) we apply the method of the authors of $[4,5]$ in combination with the constructions in [6]. The proofs of the assertions made are obtained by a formal replacement of T_{ε} by F_{s} (the role of the lemma in Sect. 11 of [6] is here played by Lemma 1 proved below), and we omit them. Below we have pointed out the case when a certain time $T=T^{\prime}\left(z_{0}\right)$ of completion of game (1) from a given point z_{0}, determined for statement (I), is sufficient for its termination in the sense of statement (III).
2. Let ε be an arbitrary positive number. We define an operator $F_{\varepsilon}: 2^{R} \rightarrow 2^{R}$ in the following manner : for any $X \subset K$ the point z_{0} belongs to set $l_{\varepsilon}(X)$ if and only if (whatever be the control v^{*} of player l^{\prime}) we can find a control u^{*} of player l^{*} such that $z(\varepsilon)=z\left(\varepsilon ; 0, z_{0}, u^{*}, v^{*}, \varepsilon\right) \subset \lambda$. We note the following properties of operator F_{ε} [4]:
1°. If $\lambda_{1} \subset \lambda_{2}$, then $I_{s}\left(\lambda_{1} ; \mathcal{F}_{s}\left(\lambda_{2}\right)\right.$;
2°. $l_{\varepsilon_{1}}\left(F_{\varepsilon_{2}}(X)\right)\left(. l_{s_{i}-\ldots}(N) ;\right.$
3°. If λ is closed, then $l_{\varepsilon}(X)$ is also closed;
4^{\bullet}. If $\left\{\lambda_{i}\right\}_{i=1}^{n}$ is a sequence of closed sets such that $\lambda_{i+1} \subset X_{i}(i=1,2, \ldots)$, then

$$
r_{s}\left(\sum_{i=1} X_{i}\right)-\prod_{i=1}^{\infty} F_{\varepsilon}\left(X_{i}\right)
$$

Let t be an arbitrary positive number. Every set $\omega_{t}=\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{m}\right\}$ of real numbers $\tau_{11}=0<\tau_{1}<\ldots<\tau_{m}=:$ is called a partitioning of the interval $\lfloor 0, t]$. We set $\delta_{i}-\tau_{i}-\tau_{i-1}\left(1-1, \ldots, m_{i}\right)$ and $\left|\omega_{i}\right|=\max \delta_{i}$. On the set of all partitionings of interval $\left\{\left(, l \mid\right.\right.$ we introduce an order relation $<$ by setting $\omega_{t}^{\prime}<\omega_{t}{ }^{\prime \prime}$ if and only if each point of partitioning ω_{i}^{\prime} is a point of partitioning $\omega_{l}{ }^{\prime \prime}$. With every partitioning ω_{t} of interval $\left\lfloor 0, t\right.$, we associate an operator $F_{\omega}: 2^{R} \rightarrow 2^{R}$ acting in the following manner:

$$
r_{(1)}(\lambda)-r_{s_{m i}}\left(r_{s_{m-1}}\left(\ldots\left(F_{\delta_{1}}(\lambda)\right) \ldots\right), \quad X \subset R\right.
$$

From properties $1^{\circ}-4^{\circ}$ it follows that:
5°. If X is closed, then $F_{\omega!}(X)$ is also closed. 6°. If $\omega_{t^{\prime}}<\omega_{l^{\prime}}$, then $l_{\omega_{t}}{ }^{\prime \prime}(X) \subset F_{\omega_{t}}{ }^{\prime}(X)$.
Lemma 1. Let X be closed, let $\omega_{l}=\left\{1, \tau_{1}, \ldots, \tau_{m}\right\}$ be an arbitrary partitioning of interval $\{0, t]$, and let the sequence $\left\{\tau_{1}{ }^{k}\right\}_{k=1}^{n}$ be such that $\tau_{1} \cdots \tau_{1}{ }^{h}<\tau_{2} ; \tau^{k} \rightarrow \boldsymbol{\tau}$ as k. -. Then

$$
\prod_{i i} F_{\omega_{l}^{l i}}(X)-l_{i, l}(X), \quad \omega_{l}^{i}=\left\{\tau_{0}, \tau_{1}^{i}, \tau_{2}, \ldots, \tau_{m}\right\}
$$

For the proof of the lemma we need a number of definitions. For each $t>0$, by u^{t} $\left(l^{\prime t}\right)$ we denote the set of all controls of player ζ (of player 1), defined on $[0, t]$ Let $z_{\mathrm{v}} \in R, X \subset R, \omega_{t}=\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{m}\right\}$ be an arbitrary partitioning of interval $[0, t]$,
and D be a subset of V^{t}. The mapping $g=g\left(z_{0}, X, \omega_{1}, D\right): D \rightarrow U^{t}$ is called the ω_{i}-quasi-strategy at point z_{0} relative to set X if:
a) whatever be $v_{1}{ }^{*}, v_{2}{ }^{*} \in D$ and $k \leqslant m$, from the equality $v_{1}(s) \equiv v_{2}(s), 0 \leqslant s \leqslant$ $\tau_{m}-\tau_{h}$, there follows the equality $u_{1}(s)=g\left(v_{1}^{*}\right)(s) \equiv u_{2}(s)=g\left(v_{2}^{*}\right)(s)(0 \leqslant s \leqslant$ $\left.1_{m}-\tau_{k}\right)\left(u_{i}(s)=g\left(v_{i}^{*}\right)(s)\right.$ is the value of the function $u_{i}^{*}=g\left(v_{i}^{*}\right) \in U^{t}$ at point s;
b) for any $v^{*} \in D$ there holds the inclusion $z(t)=z\left(t ; 0, z_{0}, g\left(v^{*}\right), v^{*}, t\right) \in \lambda$. It is easy to verify the following :
Assertion 1. Let $z_{0} \in R, X \subset R$. The inclusion $z_{0} \in F_{\omega_{l}}(X)$ holds if and only if the quasi-strategy $g\left(z_{0}, X, \omega_{t}, V^{\prime}\right)$ exists.

We go on to prove Lemma 1. Let

$$
z_{0} \in \bigcap_{k} F_{\omega_{t}} k(X)
$$

Then by virtue of Assertion 1 there exists a sequence of quasi-strategies $g_{k}=g\left(z_{n}, X\right.$, $\left.\omega_{t^{x}}, V\right)$. The quasi-strategy $g=G\left(z_{0}, X, \omega_{i}, D\right)$ is called a c-quasi-strategy if for any $v^{*} \in D$ there exists a subsequence $\left\{g_{n_{k}}\right\}$ such that

$$
\left.z\left(s ; 0, z_{0}, g n_{k}\left(v^{*}\right), v^{*}, t\right) \Rightarrow z(s ; 0, z), g\left(v^{*}\right), v^{*}, t\right), s \in[0, t]
$$

The set of 0 -quasi-strategies is nonempty. Indeed, let $v_{0}{ }^{*}$ be an arbitrary element of V^{t}. Then by virtue of the compactness of the set of motions, from the sequence of $z_{k}(s)=z\left(s ; 0, z_{0}, g_{k}\left(v_{0}^{*}\right), v_{0}^{*}, t\right)$ we can single out a subsequence converging unitormly to some motion $z(s)=z\left(s ; 0, z_{0}, u_{0}^{*}, v_{0}^{*}, t\right)$. The mapping $g=g\left(z_{0}, X, \omega_{i}\right.$, v_{0}^{*}), whose domain is the single point $v_{n},^{*}$, while $g\left(v_{0}^{*}\right)=u_{0}^{*}$, is obviously a c-quasistrategy (the inclusion $z(t) \in X$ follows from the closedness of X).

On the set of c-quasi-strategies we introduce an order relation < by setting $g_{1}\left(\varepsilon_{6}, X\right.$, $\left.\omega_{1}, D_{1}\right)<g_{2}\left(z_{0}, X, \omega_{t}, D_{8}\right)$ if and only if $D_{1} \subset D_{2}$ and for any $v^{*} \in \nu_{1}$ there holds $g_{1}\left(v^{*}\right)(s) \equiv g_{2}\left(v^{*}\right)(s), 0 \leqslant s \leqslant t$. It is easly verified that every linear ordering (see [7]) of the set F of c-quasi-strategies has a majorant. For example, a majorant is a c-quasistrategy g^{*} with a domain $D^{*}=U D$ (the union of the right-hand side is taken over the whole domain of c-quasi-strategies occurring in l^{\prime}) such that for any $v^{*} \in D^{*}$ (and, consequently, $v \in D$ for some $\left.g=g\left(z_{0}, X, \omega_{i}, D\right) \in F\right)$ there is fulfilled $g^{*}\left(v^{*}\right)=$ g ($\left.v^{*}\right)$. In accordance with Zorn's lemma 177 , in the set of c-quasi-strategies there exists a maximal element $g_{0}=g_{0}\left(z, X, \omega_{1}, D_{0}\right)$. Let us show that $D_{0}=1$, which, in accordance with Assertion 1 , completes the proof of the lemma. We assume the contrary. Let $\nu_{0}{ }^{*} \in V^{*} \backslash L_{c}$. We then define a mapping $g_{*}=g_{*}\left(z_{0}, X, \omega_{1}, D_{0} \cup v_{0}{ }^{*}\right)$ as follows: if $v^{*} \in D_{0}$, we set $s_{*}\left(v^{*}\right)(s) \equiv g_{0}\left(v^{*}\right)\langle s)(0 \leqslant s \leqslant t)$. We define the function $g_{*}\left(b_{0}{ }^{*}\right)$ as follows: by $k_{0}\left(1 \approx k_{0} \approx m\right)$ we denote the smallest positive integer for which the equality

$$
\because a(s) \equiv v_{k_{0}}(s), \quad 0 \leqslant s \leqslant \boldsymbol{\tau}_{m}-\boldsymbol{\tau}_{k_{0}}
$$

is fulfilled for some $v_{+}{ }^{*}=v_{k_{0}}{ }^{*} \in D_{0}$. By the definition of a c-quasi-strategy there exists a subsequence $\left\{g^{k}=g_{n_{k}}\right\}$ such that

$$
z\left(s ; 0, z_{0}, g^{k}\left(v_{+}^{*}\right), v_{+}^{*}, t\right) \Rightarrow z(s)=2\left(s ; 0, z_{0}, g_{0}\left(v_{+}^{*}\right), v_{+}^{*}, t\right) s \in[0, t]
$$

Case 1. $k_{0} \geqslant 2$. Then from the sequence of

$$
z_{k^{*}}^{*}(s)=z\left(0,0, z_{0}, g^{*}\left(v_{0}^{*}\right), v_{0}^{*}, t\right)
$$

by virtue of the compactness of the set of motions, we can choose a subsequence of $z_{k_{j}}{ }^{*}(s)$ converging uniformly on $[0, t]$ to some motion $z^{*}(s)=z\left(s ; 0, z_{0}, u s^{*}, v_{0}{ }^{*}, t\right)$. Since equality (2) is fulfilled on the interval $10, \tau_{m}-\tau_{k_{0}}$, then

$$
g^{k}\left(v_{0}^{*}\right)(s) \equiv g^{k}\left(v_{+}^{*}\right)(s) . \quad 0 \leqslant s \leqslant \tau_{m}-\tau_{k_{\theta}}
$$

and, consequently, by virtue of (3)

$$
\dot{z}_{i_{j}}^{*}(s) \Rightarrow z(s), \quad 0 \leqslant s \leqslant \boldsymbol{\tau}_{m}-\boldsymbol{\tau}_{k_{0}}
$$

whence $z^{*}(s) \equiv \equiv(s)$ and $u_{0}(s) \equiv g_{0}\left(v_{+}{ }^{*}\right)(s), 0 \leqslant s \leqslant \tau_{m}-\tau_{k_{0}}$. We complete the construction by setting $g_{*}\left(v_{0}{ }^{*}\right)(s) \equiv u_{0}(s), 0 \leqslant s \leqslant t$.

Case 2. $k_{0}=1$. The functions v_{+}^{*} and v_{v}^{*} coinciae on the interval $\left[0, \mathfrak{\tau}_{\boldsymbol{m}}-\tau_{1}^{n_{k}}\right]$, therefore,

$$
g^{k}\left(c_{+}^{*}\right)(s) \equiv g^{k}\left(c_{0}{ }^{*}\right)(s), \quad 0 \leqslant s \leqslant \boldsymbol{\tau}_{m}-\boldsymbol{\tau}_{1}^{n^{k}}
$$

and, consequently, in accordance with (3)

$$
z_{k}{ }^{*}(s)=z\left(s ; 0, z_{0}, g^{k}\left(v_{1}{ }^{*}\right), v_{0}^{*}, t\right) \Rightarrow z\left(s ; 0, z_{0}, g_{0}\left(v_{+}^{*}\right), v_{+}^{*}, t\right), s \in\left[0, \tau_{m}-\tau_{1}\right]
$$

By choosing a subsequence $z_{K_{j}}{ }^{*}(s)$ as needed, we can take it that

$$
z_{k_{j}}(s) \Rightarrow z\left(s ; 0, z_{n}, u_{0}^{*}, v_{0}^{*}, t\right), \quad s \in[0, t]
$$

where, by virtue of what we have said above, $u_{0}(s) \equiv g_{0}\left(v_{+}{ }^{*}\right)(s) 0 \leqslant s \leqslant \tau_{m}-\tau_{1}$. We complete the construction by setting $g_{*}\left(v_{0}{ }^{*}\right)(s) \equiv u_{0}(s) 0 \leqslant s \leqslant t$.

It is easily checked that in both cases the mapping g_{*} constructed is a c-quasi-strategy and $g_{0}<g_{*}$, which contradicts the maximality of g_{0}. Thus, $D_{0}=V^{t}$, which is what we required.
3. With each $t>0$ we associate an operator $F_{1}^{*}: 2^{R} \rightarrow 2^{R}$ in the following way:

$$
F_{t}^{*}(X)=\bigcap_{\omega_{t}} F_{\omega_{t}}(X), \quad X \subset R
$$

(the intersection in the right-hand side is taken over all partitionings of interval [0, $t]$ We note the following properties of operator $F_{i}{ }^{*}$:
7°. If X is closed, then $F_{t^{*}}(X)$ is also closed.
8°. Let X be closed and let $\left\{\omega_{t}{ }^{k}\right\}_{k=1}^{\infty}$ be an arbitrary sequence of partitionings of interval $[0, t]$ such that $\omega_{t}^{k}<\omega_{l}^{h+1}(k=1,2, \ldots)$ and $\left|\omega_{t}^{k}\right| \rightarrow 0$ as $k \rightarrow \infty$. Then

$$
F_{t}{ }^{*}(X)=\bigcap_{k=1}^{\infty} F_{\omega_{i}}{ }^{k}(X)
$$

9°. If X is closed and $0<\varepsilon<t$, then $F_{t}^{*}(X) \subseteq F_{\mathrm{E}}\left(F_{1-\varepsilon}(X)\right)$. From property 9^{\bullet} there directly ensues (see [4])

Theorem 1. Let $z_{0} \in R, T \in(0,+\infty)$. Then if

$$
z_{0} \in F_{T}^{*}(M)
$$

the differential game (1) can be completed from the point z_{0} in time T in the sense of statement (I).
4. The mapping $g_{t}=g\left(z_{0}, M, t\right): V^{t} \rightarrow U^{t}$, defined on all V^{t}, is called a t-strategy at point z_{0} relative to M if:
a) whatever be $v_{1}{ }^{*}, v_{2}^{*} \in V^{\prime}$, from the equality $v_{1}(s) \equiv v_{2}(s)(0 \leqslant s \leqslant \varepsilon \leqslant t)$ follows the equality $g\left(t i_{1}^{*}\right)(s) \equiv g\left(v v_{*}^{*}\right)(s)(0 \leqslant s \leqslant \varepsilon)$;
b) for any $v^{*} \in V^{t}$ the inclusion $z(t)=z\left(t ; 0, z_{0}, g\left(v^{*}\right), v^{*}, t\right) \in M$ nolds. We note that, obviously, every strategy $g=g\left(z_{0}, M, t\right)$ is an ω_{l}-quasi-strategy at point z_{0} relative to M for any partitioning ω_{ℓ} of interval [$0, t$].

Theorem 2. Let $z_{0} \in R, T \in(0,+\infty)$. Then if $z_{0} \in F_{T}{ }^{*}(M)$, there exists a T-strategy $g=g\left(z_{0}, M, T\right)$ such that the inclusion

$$
z\left(t ; 0, z_{0}, g\left(v^{*}\right), v^{*}, T\right) \in F_{T-t}^{*}(M), \quad 0 \leqslant t \leqslant T
$$

holds for any control $v^{*} \in V^{i}$.
Corollary. Under the hypotheses of Theorem 1, differential game (1) can be completed from the point z_{0} in time T in the sense of statement (II).

Indeed, it is sufficient if at eacn instant t the player U sets his own control " (t) equal to

$$
u(t)=g\left(v_{l}^{*}\right)(t)
$$

where g is the T-strategy given by Theorem 2 ,

$$
v_{t}(s) \equiv v(s) 0 \leqslant s \leqslant t, \quad v_{l}(s) \equiv v(t), t<s<T
$$

The inverse of Theorem 2 also proves to hold.
Theorem 3. Let $z_{0} \in R, T \in(0,+\infty)$, and let the T-strategy $g=g\left(z_{0}, M, T\right)$ exist, Then $z_{0} \in F_{T^{*}}(M)$.

Proof. It is obviously sufficient to show that $z_{0} \in F_{\omega_{T}}(M)$ for any partitioning ω_{T} of interval [0, T]. By virtue of Assertion 1 the latter is trivial because, as was noted above, every T-strategy is an ω_{T}-quasi-strategy.
5. For linear differential games, $\mathrm{i}_{4} \mathrm{e}$. tor games given by the equation [5]

$$
\begin{equation*}
d z / d t=C z-n+t \tag{5}
\end{equation*}
$$

the operator F_{ε} can be computed in explicit form. By direct calculation we verify that
and, consequently,

$$
\begin{equation*}
\left.F_{t}^{*}(X)=e^{-C} W^{r}(t), \quad W(1)=\prod_{X, n} \mid e^{r r} P l r \pm e^{r C} Q d r\right] \tag{6}
\end{equation*}
$$

where $W(t)$ is the alternating integral from [5].
6. We proceed to study the possibility of the termination of a linear differential game in the sense of statement (III). We first recall certain concepts [5, 8]. Let $A \approx R, B \div R$, and let a and β be real numbers. By definition, the set $a A \perp \beta B$ consists of those, and only those, vectors $z \in R$ which are representable in the form $z=$ $\alpha x+\beta y(x \in A, \quad y \div B)$. The set $D=A \stackrel{*}{-} B$ of those, and only those, vectors $z \in R$ for which $z+B \leq A$, is called the geometric difference of sets A and B. It is easy to verify the following.

Assertion 2. If A and B are convex and B is compact, then $(A+B) \pm B=A$.
Corollary. If A, B, C are convex, C is compact, and $A+C=B+C$, then $A=B$.
let $A(t)$ be a compact convex set depending continuously (by inclusion) on $t \geqslant 0$ By the integral

$$
\int_{b}^{c} A(\tau) d \tau, \quad c \geqslant b \geqslant 0
$$

we mean a compact [3] convex set consisting of those, and only those, $z \in R$ which can be represented in the form

$$
z=\int_{b}^{c} a(\tau) d \tau
$$

where $a^{*}=\{a(s), b \leqslant s \leqslant c\}$ is a measurable vector-valued function satisfying the
inclusion $a(s) \in A(s)$ for every s. From the definition given it follows immediately that

$$
\begin{equation*}
\int_{b}^{c} A(\tau) d \tau+\int_{c}^{d} A(\tau) d \tau=\int_{b}^{d} A(\tau) d \tau \tag{7}
\end{equation*}
$$

Finally, we present without proof the following, easily verifiable -
Assertion 3. Let A be an ellipsoid of full dimension in R,

$$
4=\left\{z: \sum_{i=1}^{n} \frac{\left(z^{i}\right)^{2}}{\left(a_{i}\right)^{2}} \leqslant 1\right\}
$$

Then there exists a convex set $B \subset R$ such that

$$
\begin{gathered}
A+B=\frac{\alpha^{2}}{\beta} S_{R} \\
\alpha=\max _{1 \leqslant i \leqslant n} a_{i}, \quad \beta=\min _{1 \leqslant i \leqslant n} a_{i}
\end{gathered}
$$

where S_{R} is the unit sphere in R; moreover, if $A=A(t)$ depends continuously (by inclusion) on t, retaining full dimension in R, then $B=B(t), \alpha=\alpha(t), \beta=\beta(t)$ also are continuous.
7. Let linear differential game be described by a vector differential equation (5) in which C is a constant square matrix of order n; let P and Q be convex compacta, and the terminal set M be representable in the form $M=M_{0}+W_{0}$, where M_{0} is a linear subspace of space R, W_{0} is a convex compactum in the orthogonal complement L of M_{0} in R. We denote the projection operator from R into L by π and the unit sphere in L by S. By L_{P} we denote the support plane to P (i. e. a set of the form $L_{P}=$ $M_{P}+a$, where $a \in R, M_{P}$ is a linear subspace of space R, such that the set $P-a$ belongs to M_{P} and has interior points therein). Let S_{0} be the unit sphere in M_{P}.

We assume that the following conditions are fulfilled for game (5):
Condition 1. We can find $\lambda_{0}>0$ and a convex set $P^{\prime} \subset R$ such that $P+$ $P^{\prime}=\lambda_{n} S_{0}$.

Everywhere subsequently we agree to mean by r an arbitrary positive number. We consider the mapping $\Phi(r)=\pi e^{r C}: R \rightarrow L$ of space R into L.
Condition 2. The mapping $\Phi(r): M_{P} \rightarrow L$, treated as a mapping from M_{F}, into L, is an "onto" mapping.

Lemma 2. Suppose the Conditions 1 and 2 have been satisfied for game (5). Then there exist a compact convex set $P(r) \subset L$, depending continuously (by inclusion) on r and a continuous positive function $\gamma(r)$ such that

$$
\begin{equation*}
\Phi(r) P+P(r)=\gamma(r) S, \quad r>0 \tag{8}
\end{equation*}
$$

Proof. In accordance with Condition 1

$$
\Phi(r) P+\Phi(r) P^{\prime}=\lambda_{0} \Phi(r) S_{0}
$$

From Condition 2 it follows that $\lambda_{0} \Phi(r) S_{0}$ is an ellipsoid of full dimension in L, depending continuously on r, and, consequently (Assertion 3),

$$
\lambda_{0} \Phi(r) S_{0}+B(r)=\gamma(r) S, \quad r>0
$$

where $B(r)$ and $\gamma(r)$ are continuous. We complete the proof of the lemma by setting $P(r)=\Phi(r) P^{\prime}+B(r)$.

Let $t \geqslant 0$. We consider the set

$$
W^{*}(t)=\left(W_{0} \therefore \int_{1}^{1} \Phi(r) P d r\right) * \int_{0}^{1} \Phi(r) Q d r
$$

We assume that the following conditions are fulfilled:
Condition 3. For any $t \geqslant 0$ the set $W^{*}(t)$ is nonempty and

$$
\begin{equation*}
W^{*}(t)+\int_{0}^{1} \Phi(r) Q d r=W_{0}+\int_{0}^{1} \Phi(r) P d r \tag{9}
\end{equation*}
$$

Condition 4. For any $t>0$ we can find $\lambda(t)>0$ such that

$$
\begin{equation*}
W^{*}(t)=\left[W^{*}(t) \pm \lambda(t) S\right]+\lambda(t) S \tag{10}
\end{equation*}
$$

It is easy to verify the following -
Assertion 4. Suppose that Condition 3 is satisfied for differential game (5). Then

$$
W(t)=\int_{M, 0}^{t}\left(e^{r r} P d r * e^{r C} Q d r\right)=M_{0}+W^{*}(t)
$$

Thus, if the inclusion

$$
\begin{equation*}
\pi e^{T C} z_{0} \in W^{*}(T) \tag{11}
\end{equation*}
$$

is satisfied, then in accordance with Theorem I the linear differential game (5) can be completed from the point z_{0} in time $T=T\left(z_{0}\right)$, where $T\left(z_{0}\right)$ is the minimum of all $T \geqslant 0$ for which inclusion (11) is fulfilled. This result is contained in the following theorem.

Theorem 4. Suppose that Conditions $1-4$ are fulfilled for the linear differential game (5). Then, if inclusion (11) is fulfilled, game (5) can be completed from point z_{0} in time $T=T\left(z_{0}\right)$ in the sense of statement (III).

Proof. For each $t>0$ we denote by $\varepsilon(t)$ the largest positive number $\varepsilon \leqslant t / 2$ (existing by virtue of Lemma 2) for which the inequality

$$
\lambda(t)-\int_{1-\varepsilon}^{0} \tilde{}(r) d r \geqslant 0
$$

is fulfilled. Let us show that for any $t>0$ the following relation holds:

$$
\begin{equation*}
W^{*}(t)=\left|W^{*}(t-\varepsilon(t)) \stackrel{*}{-} \int_{i-\varepsilon(!)}^{1} \mathbb{D}(r) Q d r\right|+\int_{i=\varepsilon(1)}^{1} \mathbb{D}(r) P d r \tag{12}
\end{equation*}
$$

Indeed, in accordance with the corollary to Assertion 2 , from equality (9) we have

$$
W^{*}(t)+\int_{t-\varepsilon(t)}^{t} \Phi(r) Q d r=W^{*}(t-\varepsilon(t))+\int_{t-\varepsilon(t)}^{t} \Phi(r) P d r
$$

$$
\begin{gathered}
W^{*}(t)+D+\int_{t-\varepsilon(t)}^{t} \Phi(r) Q d r=W^{*}(t-\varepsilon(t))+\lambda(t) S \\
D=\int_{t-\mathrm{E}(t)}^{t} P(r) d r+\left(\lambda(t)-\int_{t-\mathrm{E}(t)}^{t} \gamma(r) d r\right) \cdot S
\end{gathered}
$$

Therefore, on the basis of the corollary to Assertion 2 we obtain, using equality (10),

$$
\left[W^{*}(t) \geq \lambda(t) S\right]+D=W^{*}(t-\varepsilon(t)) * \int_{\left.1-\varepsilon()^{\prime}\right)}^{t} \Phi(r) Q d r
$$

Adding

$$
\int_{t-t(t)}^{1} \Phi(r) P d r
$$

to both sides of this equality, we obtain the desired relation (12) (see the expression for D and formula (10)).

We set $T_{0}=T_{0}\left(z_{0}\right), \varepsilon_{1}=\varepsilon\left(T\left(z_{0}\right)\right)$. Since $\pi e^{T_{0} l_{i}^{2}} z_{0} \in W^{*}\left(T_{n}\right)$, in accordance with (12) we can find a control $u_{0}^{*}=\left\{u_{0}(s), 0 \leqslant s \leqslant \varepsilon_{1}\right\}$ of player \dot{U} such that

$$
\pi e^{T_{0} C_{z_{0}}-} \int_{T_{0}-z_{i}}^{T_{0}} \pi e^{r C_{u_{0}}}\left(T_{0}-r\right) d r \in\left[W^{*}\left(T_{0}-\varepsilon_{1}\right) \pm \int_{T_{0}-\varepsilon_{1}}^{T_{0}} \pi e^{r C} Q d r\right]
$$

Therefore, whatever be the control $v^{*}=\left\{v(s), 0 \leqslant s \leqslant \varepsilon_{1}\right\}$ of player V, for the point

$$
z_{1}=z\left(\varepsilon_{1}\right)=z\left(\varepsilon_{1} ; 0_{1} z_{0}, u_{0}^{*}, v^{*}, \varepsilon_{1}\right)=e^{\varepsilon_{1} C}\left(z_{0}-\int_{0}^{\varepsilon_{1}} e^{-B C}\left[u_{0}(s)-v(s)\right] d s\right)
$$

we have
$\pi e^{\left(T_{0}-\varepsilon_{1}\right)} C_{z_{1}}=\pi e^{T_{0} C_{z_{n}}}-\int_{T_{0}-\varepsilon_{1}}^{T_{0}} \pi e^{r r_{u_{0}}\left(T_{0}-r\right) d r}+\int_{T_{0}-\varepsilon_{1}}^{T_{0}} \pi e^{r C_{v}}{ }_{v}\left(T_{0}-r\right) d r \in W^{*}\left(T_{0}-\varepsilon_{1}\right)$
and, consequently, $T\left(z_{1}\right) \leqslant T_{0}-\varepsilon_{1}$, whatever be the control of player V. Theorem 4 is proved if only we note that all the arguments presented above are applicable to the point $z_{1}=z\left(\varepsilon_{1}\right)$, etc.

Pontriagin's verifying example [9] satisfies the hypotheses of Theorem 4.
The author thanks E. F. Mishchenko for guiding the work.

BIBLIOGRAPHY

1. Filippov, A. F.. Differential equations with a discontinuous right-hand side . Mat. Sb. , Vol, 51, N1, 1960.
2. Krasovskii, N. N. and Subbotin, A. I., Alternative for the game problern of convergence. PMM Vol. 34, N26, 1970.
3. Filippov, A.F., On certain aspects of optimal control theory. Vestn. MGU, Ser. Mat. . Mekh. , Astron, , Fiz. i Khim., Ne2, 1959.
4. Pshenichnyi, B. N. . Structure of differential games. Dokl. Akad. Nauk SSSR, Vol. 184, N. $2,1969$.
5. Pontriagin, L.S., On linear differential games, 2. Dok1, Akad. Nauk SSSR, Vol. 175, N8, 1967.
6. Gusiatnikov, P. B. . On the structure of differential games. In: Mathematical Methods of Investigation and Optimization of Systems, Issue 3. Kiev, 1970.
7. Dunford, N. and Schwartz,J. T., Linear Operators, Vol. 1: General Theory. Moscow, Izd. Inostr. Lit, 1962.
8. Hadwiger, H.. Lectures on Content, Surface Area and Isoperimetry. Moscow. "Nauka", 1966.
9. Pontriagin, L. S. On the theory of differential games. Uspekhi Mat, Nauk, Vol, 21, N $4,1966$.
